
Visibility and lifetime (1)
Block is a section of code enclosed into braces. The body of function is a block. The

compound statement used in looping (while) and branching (if, if else) is also a block, i.e.

a block may contain other blocks. Let us have a function:

void fun(int x)

{

int a = 0, b;

………………… // some actions

}

Question: are the identifiers x (formal parameter), a and b (declared in function) now

reserved or is it possible to use the same identifiers in other functions (for example in

main) of the same program?

Answer: variables declared in a block are visible only inside the same block or in other

words, they have block scope. This is valid also for formal parameters. So, identifiers x, a

and b are reserved only inside function fun. You may freely use the same names in other

functions. Example:

int main()

{

int x = 10;

fun(x); // one x is declared in main and the other in fun. Here the value of x from main

// is copied into x declared as formal parameter of fun

Visibility and lifetime (2)
void fun(int x)

{

int a = 0, b;

………………… // some actions

}

Question: when the identifiers x (formal parameter), a and b (declared in function) get

their memory field (4-byte each) and when they lose it?

Answer: the memory for them is allocated when the program enters into their scope and

freed when the program exits their scope. So, when the function fun is called and starts to

run, the operating system allocates memory for x, a and b. When function fun returns, x, a

and b cease to exist and the operating system may use their memory for storing other

information. Example:

int main()

{

int i = 0, array[100];

…………………..

while (i < 100)

fun(array[i]); // x, a and b get memory 100 times and lose 100 times.

// On each call a gets initial value 0 and b has each time

// some garbage initial value that may or may not be equal with the

// value it had at the end of previous run.

Visibility and lifetime (3)
void fun(int x)

{

static int n;

………………… // some actions

n = n +1;

}

Keyword static in declaration sets global lifetime (or storage duration). Memory for static

variables is allocated when the program starts to run and is freed when the program stops

to run. By default the static variables are initialized to 0 but the programmer may set his /

her own initial value. Example:

int main()

{

int i = 0, array[100];

…………………..

while (i < 100)

fun(array[i]); // n does not lose its memory. After first call its value is 1, after the

// second call its value is 2, etc.

On the same time, the visibility of a static variable is local, i.e. identifier n is reserved

only inside function fun.

Visibility and lifetime (4)

A variable may be declared inside a block following the while, if or else keyword. In that

case their scope is not the function but the block inside the function. Example:

void fun(int x)

{

int a, b, k; // a gets memory

………………… // some actions, a is used

while (k < 10)

{

int a; // a gets memory

……………… // some actions, a is used, a exists but is hidden, b may be used

} // a is destroyed

……………… // some actions , a is used

} // a is destroyed

Variables declared in a function or in a compound statement inside a function belong to

the auto (automatic) storage class or static storage class. They can be accessed only

within their scope, i.e. in the block they have been declared. Variables of static class with

block scope preserve their value even when the program has exited their scope because

the memory allocation for them is occured only once when the program starts to run.

Variables of auto class have memory and keep their current value only when the program

is running in their scope.

Visibility and lifetime (5)

A variable may be declared out of functions: at the begining of source code file between

the preprocessor directives and the definition of the first function or between two

definitions of functions. For example:

#include "stdio.h"

int fun1(int, int); // prototypes

void fun2(double, double);

double dm[50];

int i; // dm and i may be accessed in main, fun1 and fun2

int main()

{ // may access, read and modify i and dm

……………….

}

int fun1(int x, int y)

{ // may access, read and modify i and dm

……………

}

void fun2(double d1, double d2)

{ // may access, read and modify i and dm

………………

}

Visibility and lifetime (6)
Scope of variables declared out of functions includes all the functions defined in the

current source code file and following to its declaration. Memory for them is allocated

when the program starts to run and is freed when the program stops to run. By default

they are initialized to 0 but the programmer may set his / her own initial value. So, they

have file scope and global lifetime.

To extend their scope to functions defined in other source code files redeclare them with

keyword extern, for example:

#include "stdio.h"

#include "stdlib.h"

int fun3(int, char); // prototypes

void fun4(double, double, int, int);

extern double dm[50];

extern int i; // dm and i may be accessed also in fun3 and fun4

int fun3(int x, char c)

{ // may access, read and modify i and dm

……………

}

void fun4(double d1, double d2, int a, int b)

{ // may access, read and modify i and dm

………………

}

Visibility and lifetime (7)
The names of variables with file scope and variables with block scope may match. In that

case the variable with block scope shadows the variable with file scope:

#include "stdio.h"

int fun1(int, int); // prototypes

void fun2(double, double);

double dm[50];

int i;

int main()

{

int i; // i is hidden and not accessible, dm is accessible

……………….

}

int fun1(int x, int y)

{

……………

Remark: in C++ the hidden variables are accessible, but we have to use the :: scope

resolution operator. So in our main:

:: i = 10; // i is used

i = 10; // i is used

Visibility and lifetime (8)
If the names of the two or more variables with file scope match, linking fails. Such a

situation may happen when there are several programmers working on the same large

project.

However, if a variable with file scope is declared as static, the linker does not handle it.

Static variables with file scope may be used only in the file in which they are declared. To

extend them to other source code file is not possible. But two source code files may

declare static variable with file scope having the same name:

#include "stdio.h"

int fun1(int, int); // prototypes

static double dm[50];

int i; // dm and i may be accessed in main and fun1

int main()

{ // may access, read and modify i and dm

……………….

}

int fun1(int x, int y)

{ // may access, read and modify i and dm

……………

}

Visibility and lifetime (9)
Summary:

1. Variables may have block scope (called also as local variables) or file scope (called

also as global variables).

2. Block scope variables may be of auto storage class or static storage class.

3. File scope variables if they are not of static storage class may be extended to other

source code files. Thus we may get variables accessable in each function of our

project.

4. File scope variables if they are of static storage class can be accessed only in the file

where they are declared.

5. All the file scope variables as well as the block scope variables of static storage class

have global lifetime: they get their memory when the program starts to run and lose

when the program quits.

6. Block scope variables of auto storage class get memory when the program enters into

their block and lose memory when the program leaves their block. It is said also that

they have local lifetime.

Remark: in some books you may read that local variables of auto storage class may be

optionally declared with keyword auto, for example:

auto int i = 10;

It is not true for C++ compilers: in C++ keyword auto means that the compiler must

guess the variable type itself.

Informing about errors (1)
A function must not crash or hang. Therefore it must always check the values of

arguments. If they are not correct, the function must inform the calling function and return.

In our previous exercises, if the function was not able to perform its task, it returned NAN.

But we can use NAN only if the return value type is float or double. In addition, return

value NAN does not tell what exactly was the reason of failure.

A more universal solution is to use global variables, for example like this:

#define SUCCESS 0 // Do not use numbers without explanation: the code must be readable

#define PARAMETER_TOO_LARGE 1

#define PARAMETER_TOO_SMALL 2

#define NO_SOLUTION 3

int error_number = SUCCESS;

void fun(double);

…………………………………

void fun(double x)

{

if (x <= 1e3)

{

error_number = PARAMETER_TOO_SMALL;

return;

}

……………………………………

Informing about errors (2)
int main()

{

double z;

…………………………

fun(z);

if (error_number != SUCCESS)

{

if (error_number == PARAMETER_TOO_LARGE)

printf("Parameter value %lg is too large\n", z);

else if (error_number == PARAMETER_TOO_SMALL)

printf("Parameter value %lg is too small\n", z);

else

printf("Calculation with parameter value %lg failed\n", z);

printf("Press a key\n");

_getch();

return 1;

}

…………………………………………

Now the calling function as well as the human operator know what has happened.

Increment and decrement (1)
Let

int x = 1;

Then after statement

x++;

x is already 2. The same result we could achieve with statement

x = x + 1;

Increment ++ is an unary operator that increases the value of its operand by 1.

Decrement -- decreases the value by, for example after

x--;

x is set back to 1, the alternative statement is

x = x – 1;

The operand must be an lvalue: an identifier or expression that specifies a certain

memory field:

(x+10)++; // error

Increment and decrement come in two varieties:

<lvalue>++ // postfix mode

++<lvalue> // prefix mode

<lvalue>--

--<lvalue>

Increment and decrement (2)
int x = 10, y, z;

x++; // x is now 11

++x; // x is now 12, in those expressions there is no difference between the postfix and

// prefix modes

y = x++; // After this expression x gets new value 13 and y gets new value 12.

z = ++x; // After this expression x gets new value 14 and z gets new value 14.

In prefix incrementing (decrementing) the value is incremented (decremented) first and

the new value is used for the following operations.

In postfix incrementing (decrementing) the other operations of expression are performed

using the initial value. The operand is incremented (decremented) after being used.

Example:

#define ESC 27

char line[40];

int i = 0;

while (i < 40)

{

if ((line[i++] = _getche()) == ESC) // not line[++i]

break;

}

Increment and decrement (3)
The same example written in the simplest mode:

char line[40];

int i = 0;

while (i < 40)

{

char c = _getche();

if (c == ESC)

break;

line[i] = c;

i = i +1;

}

One more version of this example:

char line[40];

int i = 0;

while (i < 40 && (line[i] = _getche()) != ESC)

i++;

The shortest version:

char line[40];

int i = 0;

while (i < 40 && (line[i++] = _getche()) != ESC);

Looping (1)
double array[7] = { 1.0001, 1.256, 111.4, 44.5, 6.789, 12. 47, 54.98}, average;

double sum = 0.0;

int i = 0; // action 1: initialize the loop

while (i < 7) // action 2: test the condition

{

sum = sum + array[i];

i++; // action 3: update the condition

}

average = sum / 7;

In for loop those three actions are gathered into one place:

for (<initializing_statement(s)>; <condition>; <update_statement(s)>)

<loop_body_statement>

Example:

for (i = 0; i < 7; i++)

sum = sum + array[i];

average = sum / 7;

There is no semicolon after update statement(s):

for (i = 0; i < 7; i++;) // error

Looping (2)
Exercise:

Write a function that fills an array with pseudo-random numbers and returns the

maximum of them. To test write the main function.

Requirements:

• Use the for loop.

• The array to fill must be defined as global variable (i.e. it has file scope):

int RandVal[100];

• The prototype of function to write is

int GetRandArray(int);

where the parameter is the number of pseudo-random values to find.

• The main must read from keyboard the number of pseudo-random values to find and

print the results.

• The GetRandArray function must check its input value. If it is negative, 0 or exceeds

100, the function may return any value.

• There must be a global variable to inform the main about success or errors in input

data. The GetRandArray function must set the value of global variable. The main must

check this value and in case of errorrs print the message.

• Read the specification carefully!

Looping (3)
for (<initializing_statement>; <condition>; <update_statement(s)>)

<loop_body_statement>

The initializing statement may be a variable declaration, for example:

int array[5][10]; // matrix (i.e.tabel) of 5 rows and 10 columns

for (int i = 0; i < 5; i++) // declare local variable i

{

for (int j = 0; j < 10; j++) // declare local variable j

{

array[i][j] = 0;

} // scope of j ends

} // scope of i ends

…………………. // after loop variables i and j are unrecognized

Looping (4)
Exercise:

Write a function that fills a global array

char Table[5][5];

in the following way:

* + + + +

- * + + +

- - * + +

- - - * +

- - - - *

The prototype of the function is your own choice. To test the result write main that prints the

result.

Tips:

• You do not need the ASCII table. Use the character constants.

• For printing characters see the specification of printf.

Looping (5)
for (<initializing_statement>; <condition>; <update_statement(s)>)

<loop_body_statement>

Sometimes the initialization is not needed. In that case write the empty statement (i.e.

only the semicolon). Example:

char buf[100]; // this array contains some text, we need to know the index of the last 'x'

// for example, in text "kxmlnxdiu" the result is 5

int n = 0;

for (; n < 100 && buf[n]; n++); // at the end of loop n is the index of terminating 0

// semicolon right after for closing parenthese means that the

// loop body is empty

for (; n >= 0; n--) // moving backwards to the beginning of string

{

if (buf[n] == 'x')

break;

}

if (n < 0)

printf("\'x\' not found\n");

else

printf("%d is the index of last \'x\'\n", n);

Looping (6)
for (<initializing_statement(s)>; <condition>; <update_statement(s)>)

<loop_body_statement>

Sometimes we need several initialization statements. If they are not declaration

statements, we may separate them by comma. Example:

int table[5][10]; // matrix (i.e.tabel) of 5 rows and 10 columns

int sum[5]; // array of sums of table rows

int i, j;

for (i = 0; i < 5; i++)

{

for (j = 0, sum[i] = 0; j < 10; j++) // but not int j =0, sum[i] = 0;

{

sum[i] = sum[i] + array[i][j];

}

printf("Row %d sum is %d\n", i, sum[i]);

}

Looping (7)
for (<initializing_statement(s)>; <condition>; <update_statement(s)>)

<loop_body_statement>

Sometimes we do not need any update statement. In that case simply omit it (no

semicolon to mark the empty statement). Example:

#define ESCAPE 27 Empty place

char line[41];

int i;

for (i = 0; i < 40 && (line[i++] != _getche()) != ESCAPE;); // empty body

Some alternatives:

for (i = 0; i < 40 && (line[i] != _getche()) != ESCAPE; i++);

or

for (i = 0; i < 40; i++)

{

line[i] = _getche();

if (line[i] == ESCAPE)

break;

}

The resulting line is not a regular string: there is no terminating 0. To set it, write

line[i -1] = '\0'; // the first version

line[i] = '\0'; // the second and third version

Looping (8)
for (<initializing_statement(s)>; <condition>; <update_statement(s)>)

<loop_body_statement>

Sometimes we may need several update statements. In that case separate them by comma.

Example:

int array1[40], array2[40];

for (int i =0, j = 39; i < 40; i++, j--)

array1[i] = array2[j]; // array1 is the array2 in reversed order

Sometimes we are not able to formulate the condition. In that case set it to 1 (i.e. TRUE)

and use the break or return staments to exit the loop. Example:

#define ESCAPE 27

#define ENTER '\r' // CR or "carriage return"

printf("Press ESC to stop or ENTER to continue\n");

for (; 1;) // no initializing, no updating

{

char c = _getch();

if (c == ESCAPE)

return; // ESC was pressed, exit the function

else if (c == ENTER)

break; // ENTER was pressed, continue the function

} // if neither ESC nor ENTER was pressed, repeate the loop

Looping (9)
Exercise:

There are two global arrays:

char Buf1[81], Buf2[81];

Buf1 contains a text, consisting of words. The words are separated by sequences of spaces

(character constant ' '). Those sequnces may contain 1, 2 or more spaces. Example: "I

am a student". The end of text is marked with byte containing zero. Buf2 is empty.

Write a function that puts into Buf 2 the same sentence but so that there is only one space

between words. For example "I am a student".

The prototype of the function is your own choice. To test the result write main that reads

the input text into Buf1 and prints Buf2.

Tips:

• Do not forget that there must be 0 at the end of Buf2.

• To print Buf2 write

printf("Text after compressing: %s\n", Buf2);

Looping (10)
Exercise (the specification continues on the next slide):

Write a program that is driven by the following menu:

v – count vowels

c - count consonants

x – exit

At the beginning the main prints this menu and reads the character from keyboard. If the

user has pressed v (or V) or c (or C), the main prints "Type input sentence", reads the

user's text into a global buffer, calls the function counting the vowels or consonants,

prints the result and then prints the menu again. If the user has pressed x (or X), the main

exits. Other input characters are ignored.

Tips:

The input text may contain any characters. To simplify the analysis, first convert all the

letters to lowercase:

#include "ctype.h"

char c1 = 'A';

char c2 = tolower(c1); // c2 gets value 'a'

c1 = '1';

c2 = tolower(c1); // c2 is '1', only the letters are converted, the others are simply returned

c1 = 'a';

c2 = tolower(c1); // c2 is 'a', nothing to convert

Looping (11)
Exercise continues:

Then check is the character a letter:

#include "ctype.h"

char c1 = 'A';

if (isalpha(c1)) // returns TRUE

{………………}

c1 = '1';

if (isalpha(c1)) // returns FALSE

{………………}

If this is a letter check is it possible to find it in array

char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };

If not then it is a consonant.

It is useful to split the program into 4 functions: main, converter to lowercase, counter of

vowels, counter of consonants.

In addition to isalpha and tolower, ctype.h presents more useful functions for text

analyzing. See https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

Looping (12)
The continue command causes the program to skip the remaining statements in the loop

and start the next loop cycle (i.e. perform the update and test the condition). Example:

#define ESCAPE 27

#define ENTER '\r'

char line[41];

int i;

for (i = 0; i < 40;)

{

char c = _getch(); // reads the character but not echoes on the screen

if (isblank(c)) // see https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

continue; // the user has typed a white character, ignore it

if (c == ESCAPE || c == ENTER)

break; // stop reading

_putch(c); // echoes the input character

line[i++] = c; // stores in the buffer

}

line[i] = 0; // put terminating zero

https://www.tutorialspoint.com/c_standard_library/ctype_h.htm

Looping (13)
In addition to while and for loops there is do while loop:

do

<loop_body_statement>

while (<condition>);

In while as well as in for loops if already at the beginning the testing of condition gives us

FALSE, the loop is not executed at all.

The do while loop is always executed at least once.

Example:

double array[7] = { 1.0001, 1.256, 111.4, 44.5, 6.789, 12. 47, 54.98}, average;

double sum = 0.0;

int i = 0;

do

{

sum = sum + array[i];

i++;

}

while (i < 7);

average = sum / 7;

Labels and jumping (1)
Label is an identifier marking a single statement:

<label>: <statement>

The goto statement:

goto <label>;

causes the program to jump to the statement bearing the indicated label.

Example:

double table1[5][5], table2[5][5];

int i, j;

for (i = 0; i < 5; i++) {

for (j = 0; j < 5; j++) {

if (table1[i][j] == 0)

goto end; // cannot continue, break off the both loops

else

table2[i][j] = 1 / table1[i][j];

}

}

end: if (!(i == 5 && j ==5))

printf("Error: Table1 has zero elements\n");

You cannot use goto to jump to a label defined in another function.

Labels and jumping (2)
Usage of goto should be avoided because it makes the code hard to understand and debug.

It is always possible to write a code without goto replacing it with if else and break:

double table1[5][5], table2[5][5];

int j;

for (int i = 0; i < 5; i++)

{

for (j = 0; j < 5; j++)

{

if (table1[i][j] == 0)

break; // jumps out of the inner loop

else

table2[i][j] = 1 / table1[i][j];

}

if (j != 5) // i.e. the inner loop ended abnormally

{

printf("Error: Table1 has zero elements\n");

break; // jumps out of the outer loop

}

}

Sometimes, however, it is considerable to use goto for jumping out from very long and

complicated loop or if else bodies.

Multiple choice (1)
In some cases the if else statement can be replaced by switch statement:

switch (<expression_producing_integer>)

{

case <integer_constant>: <statement>

………………………………………..

case <integer_constant>: <statement>

default: <statement>

}

Example:

while (1)

{

switch (_getche()) // produces one-byte integer

{

case 'v': CountVowels(); // if this integer is equal with 'v', call function CountVowels

break; // jump out of switch, continue the loop

case 'c': CountConsonants();

break;

case 'x': return;

default: break; // other than 'v', 'c' or 'x'

}

}

Multiple choice (2)

1. The expression in the parentheses following the keyword switch is evaluated. The

result must be an integer (char, int, long int, etc.).

2. The list of labels formatted as case <integer_constant> is scanned.

3. If there is a label containing constant that matches the result of expression, the

program jumps to this label and starts to execute the statements following it.

4. If there is no such a label, the program jumps to label default.

5. If the default label is not present, the program jumps to the statement following the

switch.

switch (_getche())

{

case 'v': CountVowels(); // as here is no break, the program calls CountVowels and

// after that CountConsonants.

// If the label was found, the program ignores all the other

// labels and runs until the end of switch statement. The break

// statement, however, forces the program to skip the

// following statements and jump out of switch.

case 'c': CountConsonants();

break;

case 'x': return;

default: break; // although not needed here, it is a good programming practice to

} // include default into any switch

Multiple choice (3)

The place to jump may be marked with multiple labels. Example:

switch (_getche())

{

case 'V':

case 'v': CountVowels();

break;

case 'C':

case 'c': CountConsonants();

break;

case 'X':

case 'x': return;

default: break;

}

The switch statement makes the code more readable. Therefore, the experienced software

developers prefer, if possible, the switch statement to if else.

Type conversions (1)

Problem:

int i = 1;

double d1, d2 = 1.5;

d1 = d2 + i;

We have mixed types: d1 and d2 are double on 8 bytes, i is integer on 4 bytes. The

addition is possible only between operands belongig to the same type. So, before the

addition d2 must be converted into 4-byte integer or i into 8-byte floating point number.

In the first case the fractional part of d2 is thrown away and the result is 2. Conversion

of floating point number to integer means that the fractional part is ignored. In the

second case the result is 2.5. Which of them?

Problem:

int k1 = 5, k2 = 2;

d1 = d2 + k1 / k2;

The result may be 3.5 (if k1 and k2 are divided as integers) or 4 (if k1 and k2 are before

division converted into double). Which of them?

Be very careful with expressions containg operands of different types. The result may be

an unexpected value.

Type conversions (2)
If the expression includes operands of different types, the compiler organizes automatic

type conversions according to the following rules:

If the expression contains operands of type signed char and signed short int, they are

converted into type signed int, i.e. widened from 1 or 2 bytes to 4 bytes. Similarly, operands

of type unsigned char and unigned short int are converted into type unsigned int:

unsigned short s1 = 1000, s2 = 2000;

unsigned int u1, u2 = 100000;

u1 = s2 + s1 + u2; // as the first step, s1 and s2 are widened to 4-byte variable

After the first step, for each binary operation involving two different types, the value of

lower ranking is converted into the value of higher ranking. The ranking from high to low

is: long double, double, float, unsigned long long int, signed long long int, unsigned long

int, unsigned int, signed long int, signed int. As seen, the types of higher ranking are with

wider range – thus we avoid the losing of information.

In assignment, the final result of expression is converted to the type of lvalue.

Type conversions (3)
An expression may include constants. In that case:

Floating point constants (like 1.5e5 or 0.125) are of type double. In C++: would you need

to handle them as float values, complete them with suffix F (or f), for example 0.125F.

Integer constants in decimal numeral system (like 125) are of type signed int. If they are out

of range of signed int, they are handled as signed long int, signed long long int or unsigned

long long int.

Integer constants in hexadecimal or octal numeral systems (like 0xFE or 0125) are also of

type signed int. If they are out of range of signed int, they are handled as unsigned int,

signed long int, signed long long int or unsigned long long int.

If an integer constant due to its value belongs to type signed int but the programmer needs

signed long int, the integer must be completed with suffix L or l (like 125L). In Visual

Studio it is useless because int and long int are identical. In C++: suffix U or u (LU or lu)

means that the constant must be handled as unsigned int (unsigned long int).

Character constants (like 'A') are of type signed char.

Remark the a constant cannot be negative. Statement

int x = -5;

means that we apply unary sign converting operation to constant 5.

Type conversions (4)

Examples:

double a, b = 10; // assignment,10 as integer is converted into double 10.0

int c = 5, d = 2;

a = c / d * b; // c and d are divided as integers and the result is 2. This result is converted

// into double and multiplied by b. The final result is 20.0

a = c / d; // the final result is 2.0 because c and d are divided as integers

a = c / b; // the final result is 0.5 because before division c is converted to 5.0

a = c % b; // error because before division c is converted to 5.0, but modulus for real point

// numbers is not defined

double x = 3.56;

int n = 10, m = 7;

int k = x * n – (2 * n) / m; // A = x * n = 35.6, n is converted to double

// B = (2 * n) / m = 2, operations between integers

// A – B = 33.6, B is converted into double

// k = 33, during assignment the result is converted to int

Type conversions (5)
Assignment

int i;

double d = 5.5;

i = d; // depending on the compiler you may got an error message or warning

causes lose of information, because the fractional part of d is ignored and i gets value 5.

If we, despite of possible lose of information, need conversion from higher ranking to

lower ranking, we have to apply the unary cast operator:

(<new_type>) <variable_or_expression>

Examples

int i;

unsigned u;

double d;

i = (int)d; // now it is correct

i = (int)u; // the range of unsigned int is wider, therefore lose of information is possible

Casting may be also used inside expressions to force the computer to ignore the

automatic type conversion rules, for example:

double d;

int i = 5, j = 2;

d = i / (double)j; // the final result is 2.5 because i and j are now divided as doubles

Type conversions (6)
Type conversion (automatic or implicit as well as with casting or explicit) between

integers is performed as follows:

1. Widening or promotion:

a. If the old type is unsigned, simply the needed number of zero bits are added.

For example:

unsigned char uc = 10;

unsigned int ui = uc; // now on 4 bytes, the result is still 10

int i = uc; // now on 4 bytes, the result is still 10

b. If the old type is signed and the new type is also signed, the needed number of

zero bits are added but the sign is copied from the original value. For example:

char c =-10;

int i = c; // now on 4 bytes, the result is still -10

c. If the old type is signed and the new type is unsigned, the results may seem very

strange. For example:

char c1 = 10, c2 = -10;

unsigned int ui1, ui2;

unsigned int ui1 = c1; // now on 4 bytes, the result is still 10 (c1 was positive)

unsigned int ui2 = c2; // now on 4 bytes but the result is 4294967286 (c2 was

// negative); converting a negative value to unsigned is of course stupidness,

// but you are allowed to do it without any warning! The software developer

// is responsible!

Type conversions (7)
2. Narrowing or demotion:

When converting from a wider type to a narrower type, the rule is very rough: bits of

the wider type that do not fit into the new narrower type are simply dropped. We may

lose information and the results may seem very strange. Examples:

int i1 = 10, i2 = 300, i3 = -10;

char c1 = (char)i1; // still 10 because 10 is in the range of char

char c2 = (char)i2; // we get 44; as 300 is not in the range of char, we have lost 3 bytes

unsigned char uc = (unsigned char)i3; // we get 246; this was a senseless converting

// but C is not responsible – you may do what

// you want!

3. From signed to unsigned and vice versa on the same number of bytes:

There is no taking the absolute value. The rule is very rough: nothing is changed in the

bit pattern but the interpretation of bits corresponds to the new type. The results may

seem very strange. Examples:

char c1 = 10, c2 = -20;

unsigned char uc1 = (unsigned char) c1; // still 10

unsigned char uc2 = (unsigned char) c2; // we get 236

unsigned char uc3 = 250;

char c3 = (char)uc3; // we get -6

Type conversions (8)
What to remember about converting of integers:

1. When you convert from a narrower signed type to a wider unsigned type, the compiler

widens the original memory with bits filled with zeroes and the value of the object

might change.

2. When you convert from a narrower signed type to a wider signed type, the compiler

widens the original memory with bits filled with zeroes without changing the sign and

the value of the object is preserved.

3. When you convert from a narrower unsigned type to a wider type, the compiler

widens the original memory with bits filled with zeroes and the value of the object is

preserved.

4. When you convert from a wider type to a narrower type, the compiler truncates the

original memory field and the value of the object might change.

5. When you convert between signed and unsigned types of the same width, the compiler

effectively does nothing, the bit pattern stays the same and the value of the object

might change.

Converting from integer to double: the value is reformatted but kept.

Converting from double to integer: the fraction part is deleted, value of the object may

changed.

Type conversions (9)

Exercises: what are the results?

1. int i = 100 / 3;

2. double d = 100 / 3;

3. int i = 100 / 3.0;

4. double d = 100 / 3.0;

5. int j = 100, k = 3;

int i = (double)j / k;

double d = j / (double)k;

6. double d = 3.2, x;

int i = 2, y;

x = d * (y = ((int)2.9 + 1.1) / d) + 1;

7. double x = 3.5, y = 2.5, z = 4.5, w;

int i = 2, j = 10;

w = 2 * x * y * z * i / j; // by Windows calculator = 15.75

w = 2 * i / j * x * y * z;

w = (double)(2 * i / j * x * y * z);

w = (double)2 * i / j * x * y * z;

Overflow and underflow
If an operation with floating point numbers produces a result that does not fit into the

range of the current type, the program crashes. This is the overflow.

The floating point value may be zero but cannot be too close to zero:

The reason is that the field of bits reserved for exponent (11 bits in case of double) can

store numbers from a limited range. Thus, a double value may be in interval -1.7 * 10308

…-1.7*10-308 and +1.7 * 10-308…+1.7*10308. If an operation with floating point numbers

produces a result falling into underflow gap, this result is in most cases replaced by zero.

This may lead to unpredictible distortion in the final results of a calculation.

There is no overflow detection in operations with integers:

unsigned int i = 4294967278; // 0xFFFFFFEE

unsigned int j = i *2; // the result is 4294967260, that is wrong. The actual result is

// 8589934556 which is out of the range of unsigned int.

// Without regarding to the error, the program continues to run

unsigned long long int k = (unsigned long long int)i * 2; // produces the correct result

This is the responsibility of software developer to foresee the possible overflow and

underflow.

Compound assignments
Expression

x = x + y;

may be also written as

x += y; // addition assignment operator

There are also:

x – = y; // or x = x – y, subtraction assignment operator

x * = y; // or x = x * y, multiplication assignment operator

x / = y; // or x = x / y, division assignment operator

x % = y; // or x = x % y, modulus assignment operator

Left of compound assignment operator must be a lvalue, right of it may be any expression.

Example:

int sequnce[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9};

for (int i = 0; i < 9; i++)

sequence[i] += rand(); // add a random value to the each member

Exercise: what does the following code snippet prints?

int i = 1, j = 1, k = 1;

i += j += k;

printf("%d %d %d\n", i, j, k);

Conditional expression
Statement

if (i > 10)

x = 1;

else

x = -1;

may be written as

x = i > 10 ? 1: -1;

Generally, the conditional expression is

<condition_expression> ? <expression_1> : <expression_2>

If the <condition_expression> produces TRUE, the prgram executes <expression_1> ; if

FALSE, then <expression_2>.

Conditional expression is ternary (neither unary nor binary) because it has 3 operands.

Conditional expression helps us to write short and effective code. For example:

int i, j, max;

max = i >= j ? i : j;

Exercise: what does the following code snippet prints?

int i = 1, j = 1, k;

k = i < j ? i++ : j++;

printf("%d %d %d\n", i, j, k);

Operator precedence (1)
Precedence Operator Description Associativity

1 ++ and --

()

[]

Increment and decrement, postfix

Function call

Reading element from array

Left -> Right

2 ++ and --

-

!

(type)

Increment and decrement, prefix

Sign conversion

Logical NOT

Type cast

Right->Left

3 *

/

%

Multiplication

Division

Modulus

Left -> Right

4 +

-

Addition

Subtraction

Left -> Right

5 <=

<

>=

>

Less or equal

Less

Greater or equal

Greater

Left -> Right

6 ==

!=

Equal

Not equal

Left -> Right

Operator precedence (2)
Precedence Operator Description Associativity

7 && Logical AND Left -> Right

8 || Logical OR Left -> Right

9 ?: Conditional Right->Left

10 =

+=

-=

*=

/*

%=

Assignment

Addition assignment

Subtraction assignment

Multiplication assignment

Division assignment

Modulus assignment

Right->Left

11 , Comma Left -> Right

This table includes only the operators we already know. The complete table is

on https://en.cppreference.com/w/c/language/operator_precedence.

https://en.cppreference.com/w/c/language/operator_precedence

Operator precedence (3)
If an expression contains operators with different precedences, the operators with higher

precedence are preformed first. For example in expression:

x = sqrt(y) + z * w;

the call to function has precedence 1 and is performed first. Multiplication has precedence

3 and is performed after that. Then addition follows. Assignment has the lowest

precedence and is performed last. To change the default precedence use parentheses. For

example in expression:

x = (sqrt(y) + z) * w;

the order is call to function, addition, multiplication, assignment.

According to this table we may write

if (a ==b && c < d) {….}

because here the logical AND has the lowest precedence. But we cannot write

while (text[i] = _getche() != '\r') {…..}

because the output of _getche is compared with '\r' before assignment, i.e. the array will be

filled with TRUE and the last element will be FALSE. The correct expression is:

while ((text[i] = _getche()) != '\r') {…..}

Associativity is used when two operators of same precedence appear in an expression:

a = b = c + d;

the order here is: addition, assignment to b, assignment to a.

If you are not sure, do not think long: use parentheses.

